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The exam has 8 questions. #7 is worth 16 points; the other seven are worth 12 points each 
 

 

1. Identify the seven languages below as 

• R = regular 

• C = context-free but not regular 

• D = recursive (decidable) but not context-free 

• E = recursively enumerable but not recursive 

• N = not recursively enumerable 

You don’t need to justify your answers. 

a. { (01)n | n >= 0}  For example, 010101 is in this language 

Regular 

 

b. {(0n1)n | n>0} For example, 000100010001 is in this language. 

Recursive 

 

c. Strings of the digits 0 thru 9 where no digit appears more than two times.    

Regular 

 

d. Strings of the form ww, where w is a string of 0s and 1s. 

Recursive 

 

e. {m | m is a valid encoding of a Turing Machine}  (Remember that we encoded a 

transition (qi,tj)=(qk,tL,dm) as 0i10j10k10L10m1 and encoded the TM as a 

sequence of transitions followed by the final state). 

Regular 

 

f. The set of encodings of Turing Machines that do accept their own encodings.  

Don’t confuse this with the diagonal language, which is the set of TMs that don’t 

accept their own encodings.   

Recursively enumerable 
  



 

2. Here is an -NFA with A as its start state (the label didn’t position quite right). 

 

                                 
a)  Convert this to a DFA. 

 

 

 

 

 

 
 

 

 

b) Describe in English the strings that are accepted by these automata, 

This accepts (01)*00* + (01)*0010*  These strings have prefix (01)*, followed either by 0 or by 

001, and then with a suffix consisting of any number of 0s.  That is more or less English. 

  



 

3. Is the language of strings of 0s and 1s that have different numbers of 0s than 1s regular? For 

example 001, 0101010 and 111 are all in this language. Either prove the language is regular or 

prove that it isn’t. 

No, this language is not regular. If it was, its complement, which is the language of strings of 0s 

and 1s with the same number of 0s and 1s, would also be regular, and we showed the latter 

isn’t. 

  



4. Consider the language {0n(0m1m)n | n > 0, m>0}  Just to be clear, strings in this language start 

with n 0s.  They then have n groups, where each group consists of some number of 0s followed 

by the same number of 1s.  For example,   000001101000111 is in this language. 

 

a) Give a grammar for this language. 

A => 0AB| 0B 

B => 0B1 | 01 

b) Give a parse tree for the derivation of 000001101000111 with your grammar. 

 

                                      



5. Show that the language {0n1m2n | n > 0, m < n  } is not context-free.  

Suppose the language is context-free. Let p be its pumping constant. Consider the string  

z = 0p+11p2p+1.  This is longer than p so it should be pumpable.  Let z=uvwxy be any 

decomposition with vx not empty and |vwx| < p.  Since there are p 1s, v and x cannot have both 

0s and 2s.  If v and x contain 0s but not 2s, pumping leaves us with different numbers of 0s than 

2s. The same applies of v and x contain 2s but  not 0s.  The only other possibility is that vwx 

consists entirely of 1s.  But then uv2wx2y no longer has more 0s and 2s than 1s. Any way we slice 

it, string z cannot be pumped. This contradicts the assumption that the language is context-free. 

  



6. Describe a TM that takes as input a string of n 0s and halts with 2n 0s on its tape.  You can use as 

many tapes as you want, though the number of tapes needs to be a constant and can’t depend 

on n.  It is not necessary to give all of the machine’s transitions; just break this down to simple 

steps that can clearly be performed by a Turing  Machine. 

 

Here is a 3 tape TM that does it.   Start with the input 0n on tape 1 and a single 0 on tape 2 and a 

single 0 on tape 3.  Erase a 0 from tape 1, then copy all of tape 2 to the end of tape 3. (Overwrite 

a 0 on tape 2 with X, write a 0 on tape 3; continue until there are no 0s on tape 2.)  Now erase 

everything on tape 2, then copy all of tape 3 onto tape 2.  Now erase another 0 from tape 1, 

copy tape 2 to the end of tape 3, erase tape 2, and copy tape 3 to tape 2.  Continue this until 

tape 1 is empty, then copy tape 3 to tape 1 as the answer. 

  



7. Let Lhippy-dippy be the set of encodings of Turing Machines that accept all strings. Our friend 

Happy (actually, his encoding) is a member of Lhippy-dippy.  The complement of Lhippy-dippy is Lskeptical, 

the set of Turing Machines that fail to accept at least one string.  Rice’s Theorem tells us that 

neither of these sets is Recursive. Are either of them Recursively Enumerable?   You can use 

facts  we proved in class about the Diagonal language, the Universal language, the Halting 

language, and the Empty and Non-Empty languages (and the complements of any of these). 

Anything else you use you need to prove. 

a) Either prove that Lhippy-dippy is Recursively Enumerable or prove it isn’t. 

 

This is not Recursively Enumerable. We can reduce the complement of the halting 

language to Lhippy-dippy.  to see this, start with an (M, w) pair. Create a new Turing Machine 

M’ that runs on input x as follows: M’ simulates M on w for |x| steps.  If M halts on w 

within |x| steps, M’ rejects x; otherwise M’ accepts x.  M does not halt on w exactly 

when M’ is in Lhippy-dippy.  So a TM that recognizes the latter would recognize the 

complement of the halting language, and we know the latter is not recursively 

enumerable. 

 
b) Either prove that Lskeptical is Recursively Enumerable or prove it isn’t. 

This one is easier.  We reduce the complement of the universal language to this.  Given 

an (M, w) pair create a new Turing Machine M’.  For any input s, M’ accepts s if s is not 

w, and M’ simulates M on w if s is w.   M’ accepts all strings if an only if M accepts w.  So 

if we could recognize if M’ is in  Lskeptical then we can recognize that (M, w) is in the 

complement of the universal language, which we know we can’t do. 

 

 

 

  



8. Explain in English what Cook’s Theorem (aka the Cook-Levin Theorem) means, without using the 

terms P, NP, NP-Complete and NP-Hard 

 

Cook’s Theory says that if we could decide in polynomial time whether an arbitrary Boolean 

expression is satisfiable (“polynomial time” means the number of steps in the decision process is 

bounded by a polynomial function of the length of the Boolean expression), then we could 

decide in polynomial time anything that can be verified (non-determinstically decided) in 

polynomial time.  

 


